**Author**: Neal Koblitz

**Publisher:** Springer Science & Business Media

**ISBN:** 9780387942933

**Category : **Mathematics

**Languages : **en

**Pages : **258

Get Book

**Book Description**
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.

**Author**: Neal Koblitz

**Publisher:** Springer Science & Business Media

**ISBN:** 9780387942933

**Category : **Mathematics

**Languages : **en

**Pages : **258

View

**Book Description**
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.

**Author**: Marc Fischlin

**Publisher:** Springer

**ISBN:** 364242001X

**Category : **Computers

**Languages : **en

**Pages : **281

View

**Book Description**
Johannes Buchmann is internationally recognized as one of the leading figures in areas of computational number theory, cryptography and information security. He has published numerous scientific papers and books spanning a very wide spectrum of interests; besides R&D he also fulfilled lots of administrative tasks for instance building up and directing his research group CDC at Darmstadt, but he also served as the Dean of the Department of Computer Science at TU Darmstadt and then went on to become Vice President of the university for six years (2001-2007). This festschrift, published in honor of Johannes Buchmann on the occasion of his 60th birthday, contains contributions by some of his colleagues, former students and friends. The papers give an overview of Johannes Buchmann's research interests, ranging from computational number theory and the hardness of cryptographic assumptions to more application-oriented topics such as privacy and hardware security. With this book we celebrate Johannes Buchmann's vision and achievements.

**Author**: James Kraft

**Publisher:** CRC Press

**ISBN:** 1315161001

**Category : **Computers

**Languages : **en

**Pages : **578

View

**Book Description**
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.

**Author**: J. H. Loxton

**Publisher:** Cambridge University Press

**ISBN:** 0521398770

**Category : **Mathematics

**Languages : **en

**Pages : **249

View

**Book Description**
Papers presented by prominent contributors at a workshop on Number Theory and Cryptography, and the annual meeting of the Australian Mathematical Society.

**Author**: Carl Pomerance

**Publisher:** American Mathematical Soc.

**ISBN:** 9780821801550

**Category : **Computers

**Languages : **en

**Pages : **188

View

**Book Description**
In the past dozen or so years, cryptology and computational number theory have become increasingly intertwined. Because the primary cryptologic application of number theory is the apparent intractability of certain computations, these two fields could part in the future and again go their separate ways. But for now, their union is continuing to bring ferment and rapid change in both subjects. This book contains the proceedings of an AMS Short Course in Cryptology and Computational Number Theory, held in August 1989 during the Joint Mathematics Meetings in Boulder, Colorado. These eight papers by six of the top experts in the field will provide readers with a thorough introduction to some of the principal advances in cryptology and computational number theory over the past fifteen years. In addition to an extensive introductory article, the book contains articles on primality testing, discrete logarithms, integer factoring, knapsack cryptosystems, pseudorandom number generators, the theoretical underpinnings of cryptology, and other number theory-based cryptosystems. Requiring only background in elementary number theory, this book is aimed at nonexperts, including graduate students and advanced undergraduates in mathematics and computer science.

**Author**: M. Welleda Baldoni

**Publisher:** Springer Science & Business Media

**ISBN:** 3540692002

**Category : **Mathematics

**Languages : **en

**Pages : **522

View

**Book Description**
In this volume one finds basic techniques from algebra and number theory (e.g. congruences, unique factorization domains, finite fields, quadratic residues, primality tests, continued fractions, etc.) which in recent years have proven to be extremely useful for applications to cryptography and coding theory. Both cryptography and codes have crucial applications in our daily lives, and they are described here, while the complexity problems that arise in implementing the related numerical algorithms are also taken into due account. Cryptography has been developed in great detail, both in its classical and more recent aspects. In particular public key cryptography is extensively discussed, the use of algebraic geometry, specifically of elliptic curves over finite fields, is illustrated, and a final chapter is devoted to quantum cryptography, which is the new frontier of the field. Coding theory is not discussed in full; however a chapter, sufficient for a good introduction to the subject, has been devoted to linear codes. Each chapter ends with several complements and with an extensive list of exercises, the solutions to most of which are included in the last chapter. Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.

**Author**: James Kraft

**Publisher:** CRC Press

**ISBN:** 1351664107

**Category : **Computers

**Languages : **en

**Pages : **300

View

**Book Description**
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.

**Author**: Song Y. Yan

**Publisher:** John Wiley & Sons

**ISBN:** 1118188586

**Category : **Computers

**Languages : **en

**Pages : **432

View

**Book Description**
The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers. Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application Presents topics from number theory relevant for public-key cryptography applications Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography Starts with the basics, then goes into applications and areas of active research Geared at a global audience; classroom tested in North America, Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s Companion Website Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.

**Author**: Song Y. Yan

**Publisher:** John Wiley & Sons

**ISBN:** 1118188616

**Category : **Computers

**Languages : **en

**Pages : **432

View

**Book Description**
The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers. Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application Presents topics from number theory relevant for public-key cryptography applications Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography Starts with the basics, then goes into applications and areas of active research Geared at a global audience; classroom tested in North America, Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s Companion Website Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.

**Author**: Lawrence C. Washington

**Publisher:** Chapman and Hall/CRC

**ISBN:** 9781420071467

**Category : **Mathematics

**Languages : **en

**Pages : **536

View

**Book Description**
Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and applications of elliptic curves. New to the Second Edition Chapters on isogenies and hyperelliptic curves A discussion of alternative coordinate systems, such as projective, Jacobian, and Edwards coordinates, along with related computational issues A more complete treatment of the Weil and Tate–Lichtenbaum pairings Doud’s analytic method for computing torsion on elliptic curves over Q An explanation of how to perform calculations with elliptic curves in several popular computer algebra systems Taking a basic approach to elliptic curves, this accessible book prepares readers to tackle more advanced problems in the field. It introduces elliptic curves over finite fields early in the text, before moving on to interesting applications, such as cryptography, factoring, and primality testing. The book also discusses the use of elliptic curves in Fermat’s Last Theorem. Relevant abstract algebra material on group theory and fields can be found in the appendices.